\(\int \cos ^3(c+d x) (a+i a \tan (c+d x))^{3/2} \, dx\) [304]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F(-1)]
   Maxima [B] (verification not implemented)
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 26, antiderivative size = 122 \[ \int \cos ^3(c+d x) (a+i a \tan (c+d x))^{3/2} \, dx=\frac {i a^{3/2} \text {arctanh}\left (\frac {\sqrt {a} \sec (c+d x)}{\sqrt {2} \sqrt {a+i a \tan (c+d x)}}\right )}{2 \sqrt {2} d}-\frac {i a \cos (c+d x) \sqrt {a+i a \tan (c+d x)}}{2 d}-\frac {i \cos ^3(c+d x) (a+i a \tan (c+d x))^{3/2}}{3 d} \]

[Out]

1/4*I*a^(3/2)*arctanh(1/2*sec(d*x+c)*a^(1/2)*2^(1/2)/(a+I*a*tan(d*x+c))^(1/2))/d*2^(1/2)-1/2*I*a*cos(d*x+c)*(a
+I*a*tan(d*x+c))^(1/2)/d-1/3*I*cos(d*x+c)^3*(a+I*a*tan(d*x+c))^(3/2)/d

Rubi [A] (verified)

Time = 0.19 (sec) , antiderivative size = 122, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.115, Rules used = {3571, 3570, 212} \[ \int \cos ^3(c+d x) (a+i a \tan (c+d x))^{3/2} \, dx=\frac {i a^{3/2} \text {arctanh}\left (\frac {\sqrt {a} \sec (c+d x)}{\sqrt {2} \sqrt {a+i a \tan (c+d x)}}\right )}{2 \sqrt {2} d}-\frac {i \cos ^3(c+d x) (a+i a \tan (c+d x))^{3/2}}{3 d}-\frac {i a \cos (c+d x) \sqrt {a+i a \tan (c+d x)}}{2 d} \]

[In]

Int[Cos[c + d*x]^3*(a + I*a*Tan[c + d*x])^(3/2),x]

[Out]

((I/2)*a^(3/2)*ArcTanh[(Sqrt[a]*Sec[c + d*x])/(Sqrt[2]*Sqrt[a + I*a*Tan[c + d*x]])])/(Sqrt[2]*d) - ((I/2)*a*Co
s[c + d*x]*Sqrt[a + I*a*Tan[c + d*x]])/d - ((I/3)*Cos[c + d*x]^3*(a + I*a*Tan[c + d*x])^(3/2))/d

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 3570

Int[sec[(e_.) + (f_.)*(x_)]/Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[-2*(a/(b*f)), Subst[
Int[1/(2 - a*x^2), x], x, Sec[e + f*x]/Sqrt[a + b*Tan[e + f*x]]], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 + b^
2, 0]

Rule 3571

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(d*
Sec[e + f*x])^m*((a + b*Tan[e + f*x])^n/(a*f*m)), x] + Dist[a/(2*d^2), Int[(d*Sec[e + f*x])^(m + 2)*(a + b*Tan
[e + f*x])^(n - 1), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 + b^2, 0] && EqQ[m/2 + n, 0] && GtQ[n, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {i \cos ^3(c+d x) (a+i a \tan (c+d x))^{3/2}}{3 d}+\frac {1}{2} a \int \cos (c+d x) \sqrt {a+i a \tan (c+d x)} \, dx \\ & = -\frac {i a \cos (c+d x) \sqrt {a+i a \tan (c+d x)}}{2 d}-\frac {i \cos ^3(c+d x) (a+i a \tan (c+d x))^{3/2}}{3 d}+\frac {1}{4} a^2 \int \frac {\sec (c+d x)}{\sqrt {a+i a \tan (c+d x)}} \, dx \\ & = -\frac {i a \cos (c+d x) \sqrt {a+i a \tan (c+d x)}}{2 d}-\frac {i \cos ^3(c+d x) (a+i a \tan (c+d x))^{3/2}}{3 d}+\frac {\left (i a^2\right ) \text {Subst}\left (\int \frac {1}{2-a x^2} \, dx,x,\frac {\sec (c+d x)}{\sqrt {a+i a \tan (c+d x)}}\right )}{2 d} \\ & = \frac {i a^{3/2} \text {arctanh}\left (\frac {\sqrt {a} \sec (c+d x)}{\sqrt {2} \sqrt {a+i a \tan (c+d x)}}\right )}{2 \sqrt {2} d}-\frac {i a \cos (c+d x) \sqrt {a+i a \tan (c+d x)}}{2 d}-\frac {i \cos ^3(c+d x) (a+i a \tan (c+d x))^{3/2}}{3 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.00 (sec) , antiderivative size = 101, normalized size of antiderivative = 0.83 \[ \int \cos ^3(c+d x) (a+i a \tan (c+d x))^{3/2} \, dx=-\frac {i a e^{-i (c+d x)} \left (4+5 e^{2 i (c+d x)}+e^{4 i (c+d x)}-3 \sqrt {1+e^{2 i (c+d x)}} \text {arctanh}\left (\sqrt {1+e^{2 i (c+d x)}}\right )\right ) \sqrt {a+i a \tan (c+d x)}}{12 d} \]

[In]

Integrate[Cos[c + d*x]^3*(a + I*a*Tan[c + d*x])^(3/2),x]

[Out]

((-1/12*I)*a*(4 + 5*E^((2*I)*(c + d*x)) + E^((4*I)*(c + d*x)) - 3*Sqrt[1 + E^((2*I)*(c + d*x))]*ArcTanh[Sqrt[1
 + E^((2*I)*(c + d*x))]])*Sqrt[a + I*a*Tan[c + d*x]])/(d*E^(I*(c + d*x)))

Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 647 vs. \(2 (97 ) = 194\).

Time = 11.93 (sec) , antiderivative size = 648, normalized size of antiderivative = 5.31

method result size
default \(-\frac {i \left (\tan \left (d x +c \right )-i\right ) \sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, a \cos \left (d x +c \right ) \left (6 i \operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \cos \left (d x +c \right ) \sin \left (d x +c \right )+6 i \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \arctan \left (\sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\right ) \left (\cos ^{2}\left (d x +c \right )\right )+3 i \operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sin \left (d x +c \right )+3 i \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \arctan \left (\sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\right ) \cos \left (d x +c \right )-6 \,\operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \left (\cos ^{2}\left (d x +c \right )\right )+6 \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \arctan \left (\sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\right ) \cos \left (d x +c \right ) \sin \left (d x +c \right )-3 i \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \arctan \left (\sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\right )+10 i \left (\cos ^{2}\left (d x +c \right )\right )-3 \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right ) \cos \left (d x +c \right )+3 \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \arctan \left (\sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\right ) \sin \left (d x +c \right )+3 \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {arctanh}\left (\frac {\sin \left (d x +c \right )}{\left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}\right )+6 \sin \left (d x +c \right ) \cos \left (d x +c \right )\right )}{12 d}\) \(648\)

[In]

int(cos(d*x+c)^3*(a+I*a*tan(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

-1/12*I/d*(tan(d*x+c)-I)*(a*(1+I*tan(d*x+c)))^(1/2)*a*cos(d*x+c)*(6*I*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arcta
nh(sin(d*x+c)/(cos(d*x+c)+1)/(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))*cos(d*x+c)*sin(d*x+c)+6*I*(-cos(d*x+c)/(cos(d
*x+c)+1))^(1/2)*arctan((-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))*cos(d*x+c)^2+3*I*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)
*arctanh(sin(d*x+c)/(cos(d*x+c)+1)/(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))*sin(d*x+c)+3*I*(-cos(d*x+c)/(cos(d*x+c)
+1))^(1/2)*arctan((-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))*cos(d*x+c)-6*arctanh(sin(d*x+c)/(cos(d*x+c)+1)/(-cos(d*x
+c)/(cos(d*x+c)+1))^(1/2))*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*cos(d*x+c)^2+6*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2
)*arctan((-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))*cos(d*x+c)*sin(d*x+c)-3*I*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arct
an((-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))+10*I*cos(d*x+c)^2-3*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctanh(sin(d*x+
c)/(cos(d*x+c)+1)/(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))*cos(d*x+c)+3*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctan((
-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))*sin(d*x+c)+3*(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctanh(sin(d*x+c)/(cos(d*x
+c)+1)/(-cos(d*x+c)/(cos(d*x+c)+1))^(1/2))+6*sin(d*x+c)*cos(d*x+c))

Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 222 vs. \(2 (91) = 182\).

Time = 0.25 (sec) , antiderivative size = 222, normalized size of antiderivative = 1.82 \[ \int \cos ^3(c+d x) (a+i a \tan (c+d x))^{3/2} \, dx=\frac {3 \, \sqrt {\frac {1}{2}} \sqrt {-\frac {a^{3}}{d^{2}}} d \log \left (\frac {{\left (\sqrt {2} \sqrt {\frac {1}{2}} {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \sqrt {-\frac {a^{3}}{d^{2}}} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} + i \, a^{2}\right )} e^{\left (-i \, d x - i \, c\right )}}{d}\right ) - 3 \, \sqrt {\frac {1}{2}} \sqrt {-\frac {a^{3}}{d^{2}}} d \log \left (-\frac {{\left (\sqrt {2} \sqrt {\frac {1}{2}} {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \sqrt {-\frac {a^{3}}{d^{2}}} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} - i \, a^{2}\right )} e^{\left (-i \, d x - i \, c\right )}}{d}\right ) + \sqrt {2} {\left (-i \, a e^{\left (4 i \, d x + 4 i \, c\right )} - 5 i \, a e^{\left (2 i \, d x + 2 i \, c\right )} - 4 i \, a\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}}{12 \, d} \]

[In]

integrate(cos(d*x+c)^3*(a+I*a*tan(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

1/12*(3*sqrt(1/2)*sqrt(-a^3/d^2)*d*log((sqrt(2)*sqrt(1/2)*(d*e^(2*I*d*x + 2*I*c) + d)*sqrt(-a^3/d^2)*sqrt(a/(e
^(2*I*d*x + 2*I*c) + 1)) + I*a^2)*e^(-I*d*x - I*c)/d) - 3*sqrt(1/2)*sqrt(-a^3/d^2)*d*log(-(sqrt(2)*sqrt(1/2)*(
d*e^(2*I*d*x + 2*I*c) + d)*sqrt(-a^3/d^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1)) - I*a^2)*e^(-I*d*x - I*c)/d) + sqr
t(2)*(-I*a*e^(4*I*d*x + 4*I*c) - 5*I*a*e^(2*I*d*x + 2*I*c) - 4*I*a)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1)))/d

Sympy [F(-1)]

Timed out. \[ \int \cos ^3(c+d x) (a+i a \tan (c+d x))^{3/2} \, dx=\text {Timed out} \]

[In]

integrate(cos(d*x+c)**3*(a+I*a*tan(d*x+c))**(3/2),x)

[Out]

Timed out

Maxima [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 884 vs. \(2 (91) = 182\).

Time = 0.83 (sec) , antiderivative size = 884, normalized size of antiderivative = 7.25 \[ \int \cos ^3(c+d x) (a+i a \tan (c+d x))^{3/2} \, dx=\text {Too large to display} \]

[In]

integrate(cos(d*x+c)^3*(a+I*a*tan(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

-1/48*(4*(I*sqrt(2)*a*cos(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - sqrt(2)*a*sin(3/2*arctan2(sin
(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)))*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(3/4
)*sqrt(a) + 12*(I*sqrt(2)*a*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - sqrt(2)*a*sin(1/2*arcta
n2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)))*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1
)^(1/4)*sqrt(a) + 3*(2*sqrt(2)*a*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1
/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos
(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + 1) - 2*sqrt(2)*a*arctan2((
cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(
2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(s
in(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - 1) - I*sqrt(2)*a*log(sqrt(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 +
2*cos(2*d*x + 2*c) + 1)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))^2 + sqrt(cos(2*d*x + 2*c)^2 +
 sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))^2 + 2*(
cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(
2*d*x + 2*c) + 1)) + 1) + I*sqrt(2)*a*log(sqrt(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) +
1)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))^2 + sqrt(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 +
 2*cos(2*d*x + 2*c) + 1)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))^2 - 2*(cos(2*d*x + 2*c)^2 +
sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) +
1))*sqrt(a))/d

Giac [F]

\[ \int \cos ^3(c+d x) (a+i a \tan (c+d x))^{3/2} \, dx=\int { {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \cos \left (d x + c\right )^{3} \,d x } \]

[In]

integrate(cos(d*x+c)^3*(a+I*a*tan(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((I*a*tan(d*x + c) + a)^(3/2)*cos(d*x + c)^3, x)

Mupad [F(-1)]

Timed out. \[ \int \cos ^3(c+d x) (a+i a \tan (c+d x))^{3/2} \, dx=\int {\cos \left (c+d\,x\right )}^3\,{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{3/2} \,d x \]

[In]

int(cos(c + d*x)^3*(a + a*tan(c + d*x)*1i)^(3/2),x)

[Out]

int(cos(c + d*x)^3*(a + a*tan(c + d*x)*1i)^(3/2), x)